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A new method to efficiently downdate an estimate and covariance generated by a discrete time

Square Root Information Filter (SRIF) is presented. The method combines the QR factor down-

dating algorithm of Gill [3] and the decentralized SRIF algorithm of Bierman [4]. Efficient removal

of either measurements or a priori information is possible without loss of numerical integrity. More-

over, the method includes features for detecting potential numerical degradation. Performance on
a 300 parameter system with 5800 data points shows that the method can be used in real time and

hence is a promising tool for interactive data analysis. Additionally, updating a time-varying SRIF

filter with either additional measurements or a priori information proceeds analogously.

Introduction

A typical 24 hour data arc for the GPS demonstration on TOPEX/POSEIDON [6] will contain

30,000 data points. To process these data points on a VAX 8530, a sequential SRIF filter will

require nearly 3 hours of CPU time. Upon processing, should outliers be discovered in the data, due
to cycle slips, atmospheric fluctuations, multipath, etc ..., they must be removed from the data arc

and another 3 hours of CPU time would then be needed for reprocessing. The method presented
here permits efficient removal of these outlying data points without reprocessing the entire data
set.

The discussion is organized in the following manner. First, a decentralized approach to up-

dating a time-varying SRIF with a single measurement is presented. From this development, it

is evident how to remove a measurement from a time-varying SRIF. Next, the one-component-

at-a-time process noise methodology is applied in the actual implementation. The necessary linear

combination of the data equation and the smoothing coefficients is then presented. Finally, the
efficiency and the numerical integrity of the method is discussed.

Updating a Time-Varying SRIF with a Single Measurement

The goal is to find estimates (x0, xl,... ,xN) to minimize the the least-squares performance
functional
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for the lineardiscrete-timedynamicmodel

zj+_ =¢jxj+Gwi j=O,N-1 (2)

with measurements

zj = Ajxj + vj j = O,N (3)

and the single measurement

Yk=Hkzk+Vk 0<k<N (4)

where 0_.(j) represents a priori information between time updates j and j+l. The data noise vj

and process noise wj are independent mean zero white Gaussian noise processes with covariances

I and R,,,(j)-IR,,,(j) -'r, respectively. Of note, when a pseudo-epoch state formulation is used Cj
and G have a simplified structure.

(xj+l ) (I Vp(j) ) (xj ) q_ (Oi ) wJ j "- O, N -1 (5)Pj+l = 0 M.i P.i

Ignoring the additional data equation yk - Hkzk + vk, the SRIF alternates between measure-

ment updates

JN(X0,_,,-..,_N) = _11_,11_+ II Aj ] x_- I1_+i=0 \ zj

N
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for j = 0, N and time updates
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N j

E HAixi - ziJ]2 + ]]Hkxk -- ykll 2 + E ]]ei]12 (9)
i= j + l i=0

for j -- 0, N - 1. The ei term represents the residual sum of squares from the i'th mesurement

update; the 0* terms represent the smoothing coefficients. Additionally, the notation 5j represents

quantities that include data up to time j + 1.

To update the filter with the additional data equation Yk -- Hkx_ + vk, it is necessary to

express this equation in terms of zk+l and wk.

IlHkxk-ykll 2 [l(--HkC_-'V Hk¢_ -1) zk+,

( w" ) - y*(k)ll2 (10)-- II (g*,(k) H,,*,_(k + 1)) zk+l

This equation is then merged with the smothing coefficients of the SRIF.

Su(_.. _,.... ,_N) =
N
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j=0
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II \ H*(k) H*,_.(k + 1),] xk+, - \ y*(k) [12 (11)

N

SN(_o,x_, ...,_r)-- _ II_jll2 + [IkN_N- Z,vll2+
j=0

k--1

___ IlR,*,(j)w.i + R,*,,_.(j + 1)zj+, - z*,(j)l}2+

j=O

N--'l

* • t_* "__, IlR,,,(3)wl+ ,,,_,(.7+ 1)xj+, - z,],(j)ll2+
j=k+l

II ,, Hi,+, _,+, \ vk+l (12)

293



The 0"* terms replace the old smoothing coefficients and Yk+l = Hk+lzk+l + uk+l is the ensuing

additional data equation. The time updates in equation (10) and the merges in equations (11)

and (12) are then repeated for k + 2, k + 3,..., N. In the end, the terminal data equation YN =
HNXN + VlV is then merged with the terminal SRIF array.

k--1

JN(x0,_,, ... xN) _-_,llR,,,(J)wj+ ,,,,0 + 1)_j+l - z,:,(j)ll2+
j=0

N--1

Z IIR'*':(J)wJ + R,*,,*(j + 1)xj+, - z,*,,*(j)[12+
j----k

R_ _- II2 + _llejll 2 (13)
II HN YN j=0

k-1

dN(Xo,x_, ..., xTv)-- _, IIR,*,,(j)wj+ R,*,_(j+ 1)xj+l - z*,(j)ll2+
j=0

N--1

Z I]R'**'(J)wJ + R,*,*(j + 1)x j+l -- z**(j)]12+
3=k

N

IIkNXN-- _NII2 + _--_.Ile_ll2+ II_NII2 (14)
j=0

The notation 0 N represents quantities resulting from merging the terminal data equation with the

terminal SRIF array. The filter estimate and covarianee are then/_1 i_r and/_r 1R_r T, respectively.

To obtain the smoothed estimates and covariances, the Dyer-McReynolds smoother [2] would then

operate with the ()* terms for j = 0, k - 1 and with the ()** terms for j = k, N - 1.

Downdating a Time-Varying SRIF with a Single Measurement

The last lines of equations (11) and (12) contain the key to reversing this process. If the
data equation Yk = Hkxk + vk has been included in the SRIF, then the 0** terms of (12) are

available. Additionally, the data equation y*(k) = H*,(k)wk + H_,,_.(k + 1)x_+_ + uk in (11) can

be generated from the measurement that is to be removed. It is possible, as shown below, to solve

for a transformation to produce the upper ()* terms of (11) and the ensuing data equation Yk+l =

Hk+_ xk+_ +vk+l in (12). The upper 0* terms of (1 l) are then the downdated smoothing coefficients

and replace the old smoothing coefficients. This process is repeated for j -- k + 2, k + 3,.. •, N. The
terminal data equation y:v = HtvxN + up is then downdated from the terminal SRIF array [3].

Implementation

It is efficient to perform the process noise updates one component at at time. For example, in

a four state filter with three process noise parameters, the smoothing coefficients from time update

j + 1 can be expressed as

R;'{(j) R*r_,_(j + 1) R_'{(j + 1) R_,_,p2(j ) R_,ra(j) z_,'_(j)

R_,_(j) R*r_,_.(j + 1) R_,p_(j + 1) R_,;(j + 1) R_,_a(j ) z;_(j)

R_,_(j) R*p_,_(j + 1) R;*.a,p_(j + 1) R*p*.a,p2(j+ 1) R_,_(j + 1) z_,_(j)

j - 0, N - 1 (15)
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wherethe ()** termsarea reminderthat all datahasbeenprocessedin the SRIF.Note that the
updateorderof the processnoiseparametersispl, p2,p3.

(5).
The first step is to express the data equation to be removed in terms of xk+t using equation

\p3k

II(H_.. Hp, k-H,_Vp,(k) Hp_,-H,_Vp2(k) Hp.% - H,_ Vpa(k))
I Xk+1 1

plk _ y_ll__
p2k
p3k

I Xk-.l.-1 1

. . plk - y*(k)ll_ (16)

p3k

The smoothing coefficients associated with pl are then downdated with an orthogonal transforma-
tion.

T (R;'_(k) R_,'_(k + l) ._!_o**(k.J- 1) R_,;,p2(k )_ R_,'_,pa(k )_ z_,!(k)0 H..,+, Hpl,+, Hp2k Hp% Yk /

(R_,,(k) R_,,,_.(k + 1) R_,,(k + 1) R_,,,p_(k) R_,,,pa(k) z_,l(k) (17)
- _ H;l(k ) H*(k + 1) 0 H_,2(k ) H_,a(k ) y*(k) )

For the sake of notation, the following variable (re)assignments are necessary:

g*(k + 1) := H._+,

H;l(k + 1) := H_,I,+,

n;_(k) := z_.%

y*(k):= _k

Next, the smoothing coefficients associated with p2 are then downdated.

T
0 H_._+_ Hp1 h+, Hp%+_ Hi,.% Yk

( r_,2(k) R_,2,_.(k + 1) R_,2,p,(k + 1) R_,2(k + 1) R_,2,pa(k) z;2(k ) "_= g;2(k ) g:(k + 1) g;,(k + 1) 0 g;a(k) y*(k) )

Again for the sake of notation, the following variable (re)assignments are necessary:

g*...(k + 1):= h_.k+ ,

Y;,1 (k + i) := hpl,+,

H;,2(k + 1) := Hp%+,

y*(k) := _k

(18)

(19)

(20)
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Finally, the smoothingcoefficientsassociatedwith p3 are downdated.

T (R_(k) R;,_,_.(k+l) R_._,,l(k+l ) R;._,,2(k+l) R_._(k+l) z_,._(k))
H_.,+, H_,I_+, H1,%+, H1,3,+, Yk+l

( R;a(k) R;.%_.(k + 1) R;._,t,,(k + 1) R;z,p2(k + 1) R;z(k + 1) z_,._(k) ) (21)
= H;,a(k ) H;(k + 1) H;,,(k + 1) H;,2(k + 1) 0 y*(k)

Note that all smoothing coefficients before time update k + 1 remain unchanged. The ()* terms

are the downdated smoothing coefficients and replace the old smoothing coefficients. The ensuing

data equation yk+_ = Hk+lx,.+l + vk+l is then used to continue this process to downdate the

smoothing coefficients from time updates k + 2 through N. In the end, the terminal data equation

YN = HN3CN + VN is then downdated from the terminal SRIF array [3].

Constructing the Orthogonal Transformation

The orthogonal transformation in equations (17), (19), and (21) operates as

0 H _ = n*(k) U*'J (22)

where the 0(k) terms are scalars and the ()' terms represent row vectors. As usual, let the

orthogonally packed measurement be stored in the last column of the row vectors. To solve for the

transformation T, multiply equation (22) by T -1 and take transposes.

R** = R* H* T (23)

Let A t = (A, a), where a = V_ - A 2 and A is a scalar to be determined. Note that the norm of

is 1. The transformation T is then constructed as an elementary Givens reflection.

o
With T constructed as such, equation (23) is then post-multiplied by .4.

The scalar A and vector H can now be determined.

H*k
A - (26)

R**(k)

H* - AR**
H - (27)

O_

If instead of downdating, it is desirable to update the filter solution with an additional mea-

surement, an elementary Givens reflection would be applied to the right side of equation (22).
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Efficiency

The discussed method was implemented on a VAX 8530. The filter test case required 30 minutes

of CPU time to process 5800 data points in a 5.5 hour data arc of a typical GPS data processing

scenario for the TOPEX/POSEIDON demonstration [6]; the filter estimated nearly 300 parameters.

Downdating points from the resulting filter output required on average 10 seconds of CPU time per

point. It proves that the linear combination of the data equation and the smoothing coefficients

is relatively fast compared with downdating the terminal data equation from the terminal SRIF

array.

Numerical Integrity

Stewart [5] has shown that downdating is stable in the presence of rounding errors. However, as
he has also shown, if the spread of singular values is greater than half the computational precision,

the precision of the smaller singular values may be lost. Fortunately, the downdating algorithm

provides a way of detecting such ill-conditioned problems; the value of a (above and a similar

quantity in the terminal downdating algorithm) is a reliable indication of trouble. Experience
has shown that if a is less than 10 -s, on a machine with a 15 digits of precision, the results

of particular estimates may be inaccurate. This situation occurs when all information is removed

from an estimated parameter. However, in an operational environment there are generally sufficient

measurements or a priori information to avoid such situations. In these cases, experience has shown

that the estimates are accurate to better than 10 digits.

Applications

In spacecraft orbit determination, often critical measurements, such as Very Long Baseline

Interferometry (VLBI) measurements, are not available until long after the usual radio-metric data

(e.g. doppler, range ) has been obtained. Using the discussed method, these critical measurements

may be efficiently added after the usual data has been processed. When using optical data for orbit

determination, camera pointing is often modeled as a white noise stochastic process. The discussed

method permits the analyst to efficiently remove optical frames and replace them with others as

desired. For large state systems with many stochastic parameters, such as GPS applications, outliers

may be removed more efficiently and just as effectively by downdating rather than reprocessing the
entire data set.

Conclusion

A new method to downdate a time-varying SRIF filter is presented. The method combines

the algorithm of Gill [3] to downdate a matrix factorization and the decentralized SRIF algorithm

of Bierman [4] to combine the results of independent time-varying SRIF filters. This method
permits efficient removal of either measure(nents or a priori information. Additionally, updating

a time-varying SRIF filter with either additional measurements or a priori information proceeds
analogously. In both cases, a data equation is propagated by alternating between time mapping

the equation and forming a particular linear combination with the SRIF's smoothing coefficients.

The terminal data equation that results can then be merged with or removed from the terminal

SRIF array. Smoothing then proceeds as usual [2]. For large state systems with many stochastic

parameters, the discussed method is expected to be a critical component in the real-time reduction

and analysis of large volumes of tracking data.
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